Forum Review

S-Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress

JUNHUI SUN,1 CHARLES STEENBERGEN,2 and ELIZABETH MURPHY1

ABSTRACT

Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. S-nitrosylation, the covalent attachment of an NO moiety to sulfhydryl residues of proteins, resulting in the formation of S-nitrosothiols (SNOs), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. Under physiologic conditions, protein S-nitrosylation and SNOs provide protection preventing further cellular oxidative and nitrosative stress. However, oxidative stress and the resultant dysfunction of NO signaling have been implicated in the pathogenesis of cardiovascular diseases. Antioxid. Redox Signal. 8, 1693–1705.

INTRODUCTION

OXIDATIVE STRESS IN VIVO can result from a reduction in endogenous antioxidant, burst formation of reactive oxygen species (ROS), or other imbalances between antioxidants and ROS. Increasing data suggest that physiologic levels of ROS may play an important role in normal cell signaling. In contrast, under pathophysiologic conditions, such as myocardial ischemia—reperfusion injury and cardiomyopathy, ROS production increases and exceeds the antioxidant defense of the cell. Thus, a large transient increase or a moderate sustained increase in ROS is suggested to be detrimental and to contribute to heart dysfunction and myocyte death (47, 77).

Nitric oxide (NO) plays an important role in the regulation of cardiac function (7, 22, 47). In addition to activating cyclic guanosine monophosphate (cGMP)-dependent signaling pathways, NO can directly modify sulfhydryl residues of proteins through S-nitrosylation, which has emerged as an important posttranslational protein modification based on prototypic redox mechanisms in signal transduction (12, 48, 68, 82). Under physiologic oxidative stress, NO might provide protection to cells by S-nitrosylation of some critical protein thiols, preventing them from further oxidative modification by ROS (Fig. 1). Conversely, increased oxidative stress and

the resultant dysregulation of NO are implicated in the pathogenesis of cardiovascular diseases. Nitrosative stress occurs with an increase in reactive nitrogen species (RNS) and ROS formed from oxidative stress. For example, the peroxynitrite (OONO⁻), generated from NO and superoxide, is a very strong cytotoxic oxidant, which can irreversibly damage cells by oxidation of free thiols, nitration of tyrosine residues, and lipid peroxidation (100, 112). In cardiac myocytes, ROS and RNS induce stress-signaling pathways involved in mitochondrial dysfunction, intracellular Ca²⁺ overload, hypertrophy and heart failure, and apoptosis and necrosis (122).

Redox and NO

Physiologic levels of ROS and NO can interact and modulate the signaling of one another. The redox status of the cell influences NO signaling in two major ways. First, the balance between NO, molecular oxygen ($\rm O_2$), superoxide anion ($\rm O_2^-$) radical, and antioxidants determines what products are made. As shown in Fig. 1, depending on the localization and level of enzymes that produce or consume $\rm O_2^-$, NO can (a) activate guanylyl cyclase and mediate cGMP-dependent signaling; (b) form $\rm N_2O_3$ by autooxidation via the reaction with $\rm O_2$ and lead to protein S-nitrosylation; (c) generate GSNO in the presence of GSH, which can mediate transnitrosylation reactions;

¹National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

²Department of Pathology, Duke University Medical Center, Durham, North Carolina.

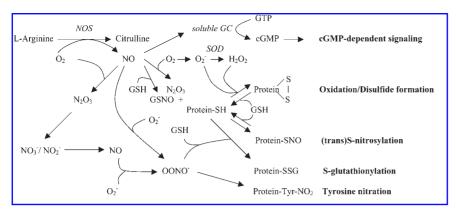


FIG. 1. Redox-based NO-related physiologic signaling. Under condition, NO is produced from NOS and mediates cGMP-dependent and/or cGMP-independent signaling, which is dependent on the (sub)cellular redox status. NO can also be produced by nitrate/nitrite in nonenzymatic (such as low pH) and enzymatic ways (such as by XOR) in ischemic or anoxia conditions. The formation of N₂O₃ by autooxidation of NO or the formation of LMW-SNOs, such as GSNO, leads to protein S-nitrosy-

lation by direct SNO formation or transnitrosylation. The ROS (O_2^- , H_2O_2 , etc.) causes the oxidation of protein such as disulfide formation. Low physiologic levels of ONOO $^-$ via the reaction of NO and O_2^- can interact with GSH, resulting in reversible *S*-glutathiolation of proteins; however, high concentrations or sustained formation of NO and O_2^- increase ONOO $^-$ formation, leading to irreversible tyrosine nitration of proteins.

(d) produce ONOO- by reacting with O2-, which was originally suggested to be a toxic end product of high levels of NO and O₂-, leading to irreversible nitration of proteins; however, recent data suggest that low physiologic levels of ONOO- can interact with reduced glutathione (GSH), resulting in reversible S-glutathiolation of proteins, such as the cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase (i.e., SERCA2a) (1). In some disease states, the thiols in SERCA2a that are the target of S-glutathiolation are irreversibly oxidized, thereby blocking the NO-dependent activation of SERCA2a (1). It is also interesting that neuronal NO synthase (nNOS) and xanthine oxidoreductase (XOR), an enzyme that produces O₂-, have been reported to colocalize in the cardiac SR. Furthermore, inhibition or deletion of nNOS results in an increase in XOR-mediated O₂- production, suggesting that NO produced by nNOS inhibits the activity of the colocalized XOR (57). Taken together, these studies suggest that the alterations in the regulation of NO- and ROS-generating enzymes, or the levels of antioxidants such as superoxide dismutase (SOD) and GSH, will alter NO and ROS signaling and the resulting protein modifications. Also consistent with this theme, endothelial NOS (eNOS) and extracellular SOD (ecSOD) have been reported to localize in the sarcolemma of ventricular myocytes (11). The efficiency of NO synthase (NOS) can also be a factor, because it has been shown that NOS can produce O₂ if the substrate L-arginine or other cofactors such as tetrahydrobiopterin are limiting (19).

ROS and NO can both interact with thiol groups, and this is a second mechanism by which redox and NO signaling interact. It has been reported that *S*-nitrosylation of thiol groups in proteins can protect these proteins against irreversible oxidative stress (41, 128). In contrast, as mentioned earlier, irreversible oxidation of thiols can block the physiologic modification by *S*-nitrosylation or *S*-glutathiolation and thereby interfere with normal physiologic signaling (1). It has been suggested that NO can protect cells from oxidative stress, whereas loss or inhibition of NOS enhances oxidative stress. Hare and Stamler (47) also suggested that ROS can alter the balance between phosphorylation and *S*-nitrosylation of key signaling molecules.

Protein S-nitrosylation and its detection

The S-nitrosylation reaction can be mediated through NO carriers such as S-nitrosothiols (SNOs), NO complexed with transition metals, or a direct reaction between NO and thiols in the presence of electron acceptors. NO is unable to react with nucleophiles under oxygen-free conditions, suggesting that its higher oxides, possibly $\rm N_2O_3$, are actually the nitrosylating agents. It has been found that oxidation of NO to $\rm N_2O_3$ is facilitated by micellar catalysis, which is mediated within the hydrophobic pocket of proteins (73, 97). The protein S-nitrosylation is redox reversible with high spatial and temporal specificity.

In most cases, the specificity of S-nitrosylation is governed by consensus acid-base motifs controlling targeted thiol pKa and nucleophilicity, and physiologic concentrations of NO can lead to S-nitrosylation of only a single cysteine thiol. However, there is complexity in the acid-base motif (i.e., that the target cysteine may not have to be juxtaposed with acidic and/or basic residues with respect to primary sequence, but such a juxtaposition may emerge in three-dimensional protein structure) (48). In addition, the acid-base motif may be limited in its application to hydrophilic environments, whereas NO-related signals may originate in membranes and other hydrophobic environments that facilitate protein S-nitrosylation (73, 97). Thus, the relative hydrophobicity of the region surrounding the target thiol may provide a "hydrophobic motif" for protein S-nitrosylation (48). A further determinant that governs the specificity of posttranslational protein modification by NO is provided by the colocalization of NO sources and targets proteins, which is based at least in part on specific protein-protein interactions with NO synthases. Conversely, the S-nitrosylation also is a temporal signaling event, which depends on the formation of NO by NOS and other nitrosylating equivalents. A subsequent transnitrosylation reaction may occur once a protein within a signaling complex or low-molecular-weight thiols such as GSH becomes S-nitrosylated, which may serve to deliver NO sequentially to its neighboring proteins within the complex, potentially creating a cascade of spatial and temporal S-nitrosylation-based NO signaling (15, 48).

Thus, a number of models have been proposed to provide for targeting S-nitrosylation to specific proteins, including (a) the consensus S-nitrosylation acid–base motif controlling targeted thiol pKa and nucleophilicity; (b) hydrophobic compartmentalization facilitating the reaction of NO and O_2 ; (c) spatial subcellular compartmentalization of NOS and proximity to potential targets; (d) allosteric regulation of thiol accessibility and reactivity by cellular redox, oxygen, metal ions, and nitrosonium (NO+) addition reaction; and (e) subsequent transnitrosylation reactions (15, 48).

The multiplicity of effects of protein S-nitrosylation has prompted the development of reliable techniques for detection of SNO, including immunoassay with antibody against S-nitrosocysteine (119), NO-based (after breakdown of SNO by mercury) chemical reactions such as Saville–Griess colorimetric method (49) or 2,3-diaminonaphthylene (DAN) fluorescence assay (38, 85), and a photolytic/ozone chemiluminescence technique (31). A newly developed biotin switch method (54, 55) has become a widespread technique in combination with proteomic approaches (44, 65, 76, 81). However, a recent study showing that ascorbic acid is not a selective reductant for S-nitrosothiols raises concerns about the specificity of the biotin switch method (67).

SNO storage and transportation

NO is a lipophilic and short-lived free radical. In the cardiovascular system, NO can produce remote or long-lasting effects by formation of various SNOs, serving as "NO carriers" to store and transport NO *in vivo*, which induces slower but much more persistent effects than does pure NO (96). SNOs derived from proteins, peptides, and amino acids supply cellular compartments and extracellular fluids with reservoirs of NO bioactivity, playing key roles in human health and disease (34).

Low-molecular-weight SNO. Intracellular NO may be buffered by low-molecular-weight (LMW)-SNOs, such as S-nitrosoglutathione (GSNO), after the reaction of NO with LMW thiols like GSH. These LMW-SNOs have been proposed to function as major physiologic mediators of the actions of NO (96). GSNO is able to modify protein thiols via S-nitrosylation or glutathionylation, which is dependent on the surrounding redox equilibrium. Regulation of the cardiovascular system by GSNO appears to be of particular physiologic interest, because GSNO is the most abundant endogenous SNO and has been suggested to be a potential NOstorage and -transport species. GSNO decomposes slowly to generate NO, a reaction catalyzed by LMW thiols and trace metal ions (130). In addition, denitrosylation can also be achieved by GSNO reductase. An elevated level of SNOs in the plasma of GSNO reductase-deficient mice suggests that SNO proteins and GSNO are in a dynamic equilibrium and that transnitrosylation via GSNO is an integral mechanism for SNO-protein formation in vivo (72).

SNO-albumin. Albumin is the most abundant transport and storage protein in the mammalian vasculature. At physiologic NO concentrations, plasma albumin accelerates forma-

tion of LMW-SNOs *in vitro* and *in vivo* via a mechanism of micellar catalysis of NO oxidation in the albumin hydrophobic core and subsequent transfer of NO⁺ to LMW thiols. The albumin-mediated LMW-SNO production, which is directly dependent on the concentration of circulating LMW thiols, contributes to vasodilatory vascular control (106). Therapeutically, inhaled NO enhances SNO-albumin formation and has been found to decrease ischemia—reperfusion injury (98).

SNO-hemoglobin. In red blood cells, it has been found that the binding of O_2 to heme iron in hemoglobin (Hb) promotes NO binding to a particular cysteine residue (β chain-Cys93), forming SNO-Hb. Deoxygenation leads to an allosteric transition in SNO-Hb that releases the NO group in the microcirculation and regulates vascular tone (23, 114). The exportation of NO bioactivity from red blood cells is through transnitrosylation from SNO-Hb to vicinal cysteine residues in the cytoplasmic domain of anion-exchange protein AE-1, also known as Band 3 (51). Thus, red blood cell-derived SNO-Hb regulates the vascular response to changes of tissue oxygen tension, thereby matching regional blood flow with local metabolic demands (113).

SNO-myoglobin. Myoglobin (Mb) is a key element influencing redox pathways in cardiac muscle to protect the heart functionally and metabolically from oxidative damage (32). Mb has been suggested to be a scavenger of cellular NO in myocardium (33), which can protect the heart from iNOS-mediated nitrosative stress (40). The observed impairment of cardiac function and exercise endurance in Mb^{-/-} mice can be partly attenuated by NO inhibition (90). Although direct evidence is still lacking, *S*-nitrosylation of Mb to form SNO-Mb is thought to be one of the molecular mechanisms for its NO-scavenging function, given the similarities in the kinetic and thermodynamic properties of NO interactions with Hb and Mb (33).

Nitrite. Although SNO-proteins have been found to exist in the human circulation, their role in the regulation of basal vascular tone has been challenged because of the presence of other bioavailable NO sources, such as nitrite. Nitrite, generated from the reaction of NO and oxygen, can be converted to NO by protons or via enzymatic conversion by XOR (9, 56, 127, 139). Hemoglobin also has been shown to function as a nitrite reductase (52). It has been found that circulating nitrite is bioactive and provides a source of intravascular NO (15, 39, 123). In models of heart and liver ischemia-reperfusion injury, nitrite has been shown to reduce infarct size dramatically and to exert NO-dependent protective effects on cellular apoptosis and necrosis. Thus, tissue nitrite can serve as a significant extravascular pool and biologic storage reserve of NO during a period of hypoxia, subserving a critical function in tissue protection from ischemic injury (28, 53, 121, 125).

Regulation of cardiac function by protein S-nitrosylation

NO plays an important role in modulating myocardial function in both health and disease (7, 47). Increasing evi-

dence suggests that nitrosative and oxidative stress play important roles in the regulation of cardiac myocyte function and survival (47, 111). Under physiologic oxidative stress, NO might provide protection to cells by *S*-nitrosylation of some critical protein thiols, preventing them from further oxidative damage.

Intracellular Ca²⁺ handling

Ca²⁺-induced Ca²⁺ release (CICR) is a well-known molecular mechanism of excitation–contraction (e-c) coupling in cardiac myocytes. In brief, membrane depolarization leads to Ca²⁺ entry via the sarcolemmal L-type Ca²⁺ channel, which then stimulates a larger Ca²⁺ release from the SR through the cardiac isoform of the ryanodine receptor (RyR2), ultimately activating systolic myocyte contraction. Diastolic myocyte relaxation is mediated by Ca²⁺ uptake via SERCA2a and Ca²⁺ efflux via the sarcolemmal sodium–calcium exchanger. Oxidative stress could impair intracellular Ca²⁺ regulation, and dysregulation of intracellular Ca²⁺ homeostasis is thought to be an important mechanism in many acute and chronic cardiovascular diseases (27).

Both eNOS and nNOS are constitutively expressed in cardiomyocytes. A recent study suggested that NO regulates cardiac function by spatial confinement of NOS isoforms (i.e., eNOS is localized in caveolae where it regulates the L-type Ca²⁺ channel in the sarcolemma, and nNOS is located in the SR where it regulates Ca²⁺ release from the SR) (5, 131). However, the molecular mechanisms responsible for spatial and temporal specificity of NO-mediated regulation of intracellular Ca2+ and myocardial function are still not clear. Although NO-mediated regulation is dependent at least in part on the activation of guanylyl cyclase and the subsequent modification of the phosphorylation state of channels, NO could also participate in the regulation of e-c coupling through cGMP-independent redox mechanisms, because all of the major Ca2+-handling proteins possess multiple free cysteine residues and are subjected to redox regulation (46, 95, 124).

L-type Ca2+ channel

The L-type Ca^{2+} current (I_{Ca-L}) has been shown to be reversibly regulated by redox, with both activation (18) and inhibition (50, 91, 105) reported. Using the biotin switch method, Sun *et al.* (118) have found that the L-type Ca^{2+} channel $\alpha 1$ subunit is the predominant S-nitrosylated protein in the membrane fractions. Protein S-nitrosylation of the L-type Ca^{2+} channel in heart occurs endogenously *in vivo*, and

the levels of the S-nitrosylation are significantly increased after \(\beta\)-adrenergic stimulation and ischemia-reperfusion, with the level of this increase being significantly higher in female than in male subjects. The higher level of SNO in females is due to a greater production of NO from constitutive isoforms of NOS. Compared with males, female mice have more caveolin-3-associated eNOS and a greater translocation of nNOS to the sarcolemma after B-adrenergic stimulation and ischemia-reperfusion (118). This increase in SNO of the L-type Ca²⁺ channel in females is correlated with reduced ischemia-reperfusion injury under β-adrenergic stimulation. Isoproterenol treatment before ischemia and reperfusion results in higher levels of S-nitrosylation of the L-type Ca²⁺ channel, lower cardiomyocyte I_{Ca-L}, a smaller Ca²⁺ transient, less SR Ca2+ loading, less ischemic injury, and better functional recovery after reperfusion in females (Fig. 2), suggesting that the inhibition of I_{Ca-L} by S-nitrosylation of the L-type Ca²⁺ channel may play a cardioprotective role in hypercontractile hearts, such as with β-adrenergic stimulation (137) and ischemia-reperfusion (6, 75).

RyR2

It has been found that physiologic concentrations (submicromolar) of NO S-nitrosylate and activate the skeletal muscle isoform of RyR (RyR1) at a single cysteine (Cys3635, within the hydrophobic calmodulin-binding domain) from among ~50 free thiols in each homotetrameric subunit, which is allosterically dependent on the presence of physiologic muscle O2 tension (31, 119, 120). A comparable study of cardiac RyR2 suggests that rather than direct NO-mediated specific S-nitrosylation, transnitrosylation via LMW-SNO may play a major role in regulation of RyR2 channel function (Sun and Meissner, unpublished study). It has been previously found that SNO compounds could poly-S-nitrosylate RyR2 and activate the channels in vitro (132). In addition, Petroff et al. (103) reported that stretching of cardiac muscle modulates Ca²⁺ release from RyR2, Ca²⁺ sparks, and the electrically stimulated Ca2+ transient via activation of PtdIns-3-OH kinase (PI3K)/Akt/eNOS. The resultant production of NO exerts its action independent of cGMP, most probably through S-nitrosylation of the RyR2 or one of its regulatory components (103).

SERCA2a

Sequestration of Ca²⁺ by SERCA2a mediates cardiac muscle relaxation. NO has been reported to modulate the activity of SERCA2a (58, 131), but the molecular mechanism is not

FIG. 2. Cardioprotection role of Snitrosylation of L-type Ca²⁺ channel in ischemic reperfused heart under adrenergic stimulation. An increase in Ca²⁺ before the ischemia, as occurs under β-adrenergic stimula-

tion or other hypercontractile conditions, causes Ca^{2+} overload and an increased ischemia–reperfusion (I/R) injury (text in *black*). However, the increased cytosolic Ca^{2+} leads to a greater increase (+) in NO production and protein *S*-nitrosylation in females, because of increased constitutive NOS (cNOSs), eNOS, and nNOS association with caveolin-3 in females. The increase in *S*-nitrosylation of the L-type Ca^{2+} channel in females reduces (–) Ca^{2+} entry and SR Ca^{2+} loading at the start of ischemia, thereby reducing Ca^{2+} overload during ischemia and reperfusion and thus reducing ischemia–reperfusion injury (text in *grey*).

clear. Protein modification mediated by NO carriers could result from S-nitrosylation or from other secondary oxidative modifications (102). Recently, a dual role of NO/O₂⁻ in regulating SERCA2a has been elucidated, in which SERCA2a is activated by reversible S-glutathiolation at Cys674 via the formation of peroxynitrite in the presence of GSH (1). Chronically elevated levels of oxidative stress in some disease states, such as atherosclerosis, could irreversibly oxidize the responsible thiols and block NO-induced S-glutathiolation (1). Peroxynitrite has been found to be a mediator of cytotoxic damage during inflammation, by inducing irreversible tyrosine nitration and dysfunction of proteins (100, 112). However, the study from Adachi et al. (1) suggests that under certain redox conditions, peroxynitrite can readily react with reactive thiols to form S-glutathione adducts.

Antioxidant defense. S-nitrosylation is modulated by the cellular redox status; its formation is dependent on the state of redox equilibrium and is prevented by high levels of antioxidants (8, 17, 21). NO has been found to block cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols, probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols (128). This may represent an endogenous protective mechanism for the mammalian cell against nitrosative/oxidative stress when intracellular thiols or other redox constituents have decreased below a critical concentration. In addition, NO generated by the coronary vasculature may serve as one of the antioxidant defenses in the heart, as blocking NO generation causes an increased oxidative stress in the heart (111).

Many redox-related enzymes contain active cysteine(s), which are capable of undergoing NO-mediated S-nitrosylation. Among these are catalase (35), glutathione peroxidase (3), glutathione reductase (17), glutathione transferase P1-1 (74), and thioredoxin (41), with the S-nitrosylation of thioredoxin being best characterized (please see Haendeler's review in this issue). Thioredoxin and thioredoxin reductase are ubiquitously expressed antioxidant enzyme systems. Studies from Dimmeler's group (41, 49) suggest that thioredoxin is essential for maintaining the content of S-nitrosylated molecules in endothelial cells. Thioredoxin itself is S-nitrosylated at Cys69 under basal conditions, and this S-nitrosylation is required both for scavenging ROS and for preserving its own redox regulatory activity. S-nitrosylation of thioredoxin also contributes to its antiapoptotic function, possibly by transnitrosylation of proteins such as caspases, thereby inhibiting their activity (41). Shear stress increases the S-nitrosylation and the reductase activity of thioredoxin in endothelial cells (49). The antioxidant effect of statins is partially mediated via S-nitrosylation and activation of thioredoxin in endothelial cells (42). Conversely, it has been found that S-nitrosylation of thioredoxin at active-site Cys32/Cys35 leads to the dissociation and activation of apoptosis signal-regulating kinase 1 (ASK1), suggesting that S-nitrosylation of thioredoxin may also play a role in proapoptotic signaling under certain oxidative stresses (116, 134).

Cell death and survival. Apoptosis is characterized by an energy-dependent process of cell shrinkage, plasma

membrane blebbing, chromatin condensation, and DNA fragmentation. Apoptosis can be initiated by binding of ligands such as tumor necrosis factor-α (TNF-α) and CD95/Fas to specific death receptors on the cell surface, leading to the formation of a death-inducing signaling complex (DISC). DISC then recruits and activates the protease zymogen procaspase-8, initiating a caspase cascade (26). Alternatively, apoptosis can be initiated by a mitochondrial pathway, which results in release of cytochrome c. Under some conditions, cytochrome c release is via the mitochondrial permeability transition pore (PTP), which undergoes a Ca²⁺-dependent transition that disrupts membrane potential and releases apoptogenic proteins. The pore is protected from opening by low pH, ADP, and a high electrochemical proton gradient ($\Delta\Psi$), while pore opening is enhanced by depleting ADP, by Pi, or by low $\Delta;\Psi$. PTP opening is promoted by specific oxidative stress targeted on a critical protein thiol. NO has been proposed to enhance the open probability of the PTP by S-nitrosylation on this specific cysteine residue, resulting in the release of cytochrome c and endonuclease G from mitochondria (104).

NO is implicated in both apoptotic and necrotic cell death, depending on the biologic milieu, such as the cellular redox state, NO concentration and exposure time, iron mobilization within the cell, and the combination with oxygen and other ROS (13, 61, 89). In addition, ATP depletion might modulate NO and affect cell death (69). On stimulation, NO can be either an antiapoptotic or a proapoptotic regulator, depending on the point in the pathway at which it interacts (20, 61). Protein *S*-nitrosylation may simultaneously inactivate several parts of the apoptotic machinery and serve to balance apoptosis and necrosis.

Akt/PKB. The serine/threonine kinase Akt/protein kinase B (PKB) is believed to play a crucial role in apoptosis and the insulin-signaling cascade in the cardiovascular system (99). The antiapoptotic effect of Akt/PKB has provided an intriguing therapeutic strategy for protecting against myocardial ischemia-reperfusion injury. In cardiovascular endothelial cells, it has been found that shear stress increases NO formation by Ca2+-independent activation of eNOS via Akt/PKB phosphorylation (25). However, a recent study suggests that NO might also inactivate Akt/PKB, providing negative feedback. In mouse C2C12 myoblasts, it has been found that S-nitrosylation of Cys296 of Akt/PKB blocks disulfide bond formation between Cys296 and Cys310 and suppresses the biologic effects of Akt/PKB (76). The involvement of Snitrosylation of Akt/PKB in insulin signaling is addressed in the energy metabolism section.

Caspases. As cysteine aspartyl proteases, caspases are categorized into initiator (caspase-8, -9, -10) and executioner (caspase-3, -6, -7) subtypes. Most caspases contain a single cysteine at the catalytic site, which is subjected to redox modification and can be S-nitrosylated by NO (70). Inactive procaspases exist as a latent zymogen. Upon apoptotic stimulation, these procaspases are cleaved into active forms. S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspases plays an essential role in the apoptotic signal cascade by inhibiting apoptotic cell death (61, 88). The activation of cas-

pase-8 is known to involve sequential activation of other caspases and functions primarily upstream of Bcl-2 and cytochrome c (60). The activity of caspase-8 can be suppressed by NO-mediated S-nitrosylation, which inhibits the cleavage of Bid and Bcl-2 and blocks release of mitochondrial cytochrome c (62).

In lymphocytes and endothelial cells, S-nitrosylation of caspase-3 (Cvs163 in p17 subunit) keeps the zymogen in an inactive state, which protects cells from unwanted apoptosis, whereas Fas activation results in denitrosylation of the catalytic cysteine as well as proteolytic cleavage of caspase-3 and induces apoptosis (43, 49, 110). S-nitrosylation of caspases is also dependent on subcellular localization. It has been reported that S-nitrosylation occurs frequently to mitochondrial, but not cytoplasmic caspase-3. Also, inhibition of endogenous NOS potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3-dependent pathway (126). A recent study using neonatal rat cardiomyocytes has demonstrated that the inhibition of apoptosis by S-nitrosylation of caspase-3 plays an important role in cardiomyocyte apoptosis (78). The ability of NO to inhibit downstream caspase-3 suggests that NO may be able to rescue cardiomyocytes from apoptosis even after the caspase cascade has been activated. In rat heart, 90% of caspase-9 zymogens are mitochondrial (64). In addition, the majority of mitochondrial caspase-9 is also S-nitrosylated (79). It would be interesting to know whether mitochondrial caspase-9 in heart undergoes S-nitrosylation as it does in other cells. Finding an appropriate dose of NO to affect caspase targets may provide a promising therapeutic strategy for preventing myocyte cell

Cyclooxygenase-2. Cyclooxygenase-2 (COX-2) is the rate-limiting enzyme in prostaglandin synthesis, which is induced in response to stress. It has been demonstrated that ischemic preconditioning upregulates the expression and activity of COX-2 in the heart, which mediates the protective effects of the late phase of ischemic preconditioning against both myocardial stunning and myocardial infarction (10). Recently, Atar et al. (4) found in rat heart that atorvastatin-induced cardioprotection is mediated by increasing inducible NOS (iNOS), which activates COX-2 in the heart by S-nitrosylation.

eNOS and Hsp90. Vascular endothelial cells express high levels of eNOS, and a recent study showed that eNOS is reversibly regulated by S-nitrosylation of its zinc-tetrathiolate cysteines (Cys96 and Cys101) and that the intracellular redox milieu mediates eNOS denitrosylation on enzyme activation (29, 30, 107). Thus, the dynamic receptor-mediated regulation of S-nitrosylation of eNOS provides a potentially important mechanism for the control of NO signaling pathways in the vascular wall (29, 30). In addition, eNOS specifically interacts with scaffolding proteins such as caveolin and heat shock protein 90 (Hsp90). It has been shown in endothelial cells that S-nitrosylation of Hsp90 not only abolishes the positive regulation of eNOS activity mediated by native Hsp90, but also inhibits its ability to hydrolyze ATP and disables its intrinsic properties as a chaperone (84).

Energy metabolism

The heart is capable of altering its metabolic rate during exercise or ischemia. The cytosolic and mitochondrial redox state is important in the regulation of oxidative phosphorylation and glycolysis under physiologic and pathophysiologic conditions. NO-mediated protein *S*-nitrosylation has been found to be involved in the regulation of energy metabolism.

Aldehyde dehydrogenase. Mitochondrial class 2 aldehyde dehydrogenase (ALDH2) is one of the key enzymes in the NAD+-dependent oxidation of various aldehydes produced during intermediary metabolism. Inactivation of ALDH2 is likely to cause marked accumulation of toxic aldehydes, leading to increased susceptibility to irreversible damage. It has been shown that S-nitrosylation of mitochondrial ALDH2 in intact cells leads to reversible inhibition of ALDH2 activity (94).

Creatine kinase. Creatine kinase (CK) plays a crucial role in energy metabolism and exists in both cytoplasmic and mitochondrial compartments. In myocytes, the CK system buffers ATP levels when oxygen supply is limited, such as during ischemia—reperfusion. It has been reported that GSNO dose-dependently inhibits CK, possibly via transnitrosylation (129). In adult rat ventricular myocytes, CK has been shown to be reversibly regulated by NO, possibly through S-nitrosylation of Cys283 (2). In addition, the concentration of GSH in myocytes seems to be an important determinant of the extent of S-nitrosylation of CK in situ. S-nitrosylation of CK with subsequent loss of enzyme activity may have important implications in heart during inotropic stimulation or under severe oxidative stress.

Glyceraldehyde-3-phosphate dehydrogenase. An essential glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to bind to membranes of diverse organs including the heart. The binding of GAPDH to the membrane not only appears to be a direct regulatory mechanism for cell metabolism but also may prevent further oxidative modification of its active thiol. The most abundant S-nitrosylated protein in the resting endothelial cell is GAPDH, suggesting a regulatory function for NO/S-nitrosylation in glycolysis (133). It has been reported that NO or GSNO inhibits GAPDH activity by S-nitrosylation of Cys149; this S-nitrosylation is reversed by LMW thiols such as GSH (92, 93). S-nitrosylation of GAPDH is responsible for reversible enzyme inhibition, which initiates subsequent modification by the pyridinium cofactor NADH. The attachment of NADH causes enzyme inactivation. Thus, S-nitrosylation may serve to protect GAPDH from oxidant inactivation and to regulate glycolysis (92). In addition, S-nitrosylation of GAPDH has been found to decrease the binding affinity of GAPDH for the red blood cell membrane (36). Moreover, it has been shown that GSNO induces S-glutathionylation of GAPDH and inactivates the enzyme in ischemic myocardium (63). Using HEK293 cells, Hara et al. (45) demonstrated that S-nitrosylation of GADPH initiates apoptosis by nuclear translocation after Siah1 (an ubiqutin E3 ligase) binding.

Mitochondrial respiratory chain components. It has been reported that NO inhibits mitochondrial ATP generation via inhibition of the mitochondrial respiratory chain, mainly at complex I and IV, leading to a switch from apoptosis to necrosis (69). In murine macrophage J774 cells, Clementi et al. (21) found that long-term exposure to NO leads to persistent inhibition of complex I, which appears to result from S-nitrosylation of complex I. A recent study using isolated rat heart mitochondria has shown that the 75-kDa subunit of complex I is S-nitrosylated by exogenously added GSNO, which results in significant inhibition of the complex. Furthermore, SNOs can be detected in mitochondria isolated from hearts subjected to ischemic preconditioning (16). Another study using endothelial cells has reported that mitochondrial complex IV/cytochrome c oxidase could also be persistently inhibited by S-nitrosylation at two active cysteine (Cys196 and Cys200) residues (138).

Insulin regulation. Oxidative and/or nitrosative stress has been implicated in many human diseases including insulin resistance. Insulin is an important metabolic regulator. A study using pancreatic β cells suggests that S-nitrosylation of glucokinase may play an important role in glucose-stimulated insulin secretion (109). Yasukawa et al. (136) have shown that S-nitrosylation of Akt/PKB at Cys224 in skeletal muscle leads to its inactivation. In addition, an increase is found in the level of S-nitrosylation and inactivation of Akt in diabetic mice versus wild-type mice. These results suggest that S-nitrosylation–mediated inactivation of Akt/PKB may contribute to the pathogenesis of insulin resistance (136).

Transcription factors

Some redox-sensitive transcriptional factors (71) crucial for cell death and survival have been reported to be *S*-nitrosylated, including the following.

Estrogen receptor. Estrogen classically exerts its genomic effects by modifying gene expression through the activation of estrogen receptors (ERs). However, a rapid nongenomic action of estrogen in vascular cells appears to play a major cardioprotective role, mainly through NO production by activation of eNOS, which triggers downstream signaling cascades (59). NO-induced S-nitrosylation of the ER at cysteine residues in its zinc-finger domain, results in selective inhibition of DNA-binding at specific estrogen-responsive elements (EREs), which may favor activation of rapid nongenomic signaling pathways and subsequent modulation of downstream genomic activity (37).

Hypoxia-inducible factor-1. Hypoxia-inducible factor-1 (HIF-1) is a transcription regulator that responds to oxygen. HIF-1 is a heterodimer composed of subunits HIF- 1α and HIF- 1α . Under normoxic condition, HIF- 1α is hydroxylated at proline and arginine residues, which promotes ubiquitination and inhibits transactivation. Hypoxia impairs these hydroxylations and leads to HIF-1 accumulation and translocation to the nucleus, where it turns on hypoxia-responsive genes. During hypoxia, NO has been found to in-

hibit HIF-1 activation by the competitive inhibition of mitochondrial respiration, leading to increased oxygen availability (82). In normoxia, NO S-nitrosylates HIF-1 α , which promotes HIF-1 α stabilization, DNA binding, and activation of downstream target-gene expression (14, 101, 117, 135).

Nuclear factor-κB. Nuclear factor κB (NF-κB) is a transcription factor that plays a pivotal role in inflammation, cell survival, and cell proliferation. NF-kB, a heterodimer composed of p50/p65 subunits, is expressed constitutively in most mammalian cells. It has been shown that S-nitrosylation of NF-κB at Cys62 of the p50 subunit inhibits NF-κB-dependent DNA binding and gene transcription (80, 87). In addition, it has been established that NF-kB is complexed with and sequestered in the cytoplasm by NF-κB inhibitor (I-κB), which is phosphorylated by I-κB-kinase complex (IKK-a, -b, and -γ), initiating I-κB ubiquitination, releasing NF-κB which translocates to the nucleus. A recent study has shown that S-nitrosylation of Cys179 of the catalytic IKK-B subunit inhibits the IKK kinase complex and subsequent phosphorylation of I-kB, providing a mechanism for S-nitrosylation to be involved in the upstream regulation of NF-kB-mediated inflammatary responses (108).

SUMMARY

In summary, SNOs and protein *S*-nitrosylation can exert important effects and mediate redox signaling in the cardio-vascular system (Table 1), and the accumulating evidence suggests that SNOs and *S*-nitrosylation play key roles in human health and disease (34, 83). Changes in the levels of SNOs depend on both enzymatic and nonenzymatic mechanisms of SNO formation, processing, and degradation. The *S*-nitrosylation of cysteine residues is redox reversible with high spatial and temporal specificity (48). The redox environment of targeted cysteine residue(s) in a protein influences the efficiency of *S*-nitrosylation and denitrosylation, and other allosteric effects can impose further control.

The redox reversibility of S-nitrosylation provides two possible mechanisms of signal transduction [i.e., (a) S-nitrosylation of the specific active cysteine residue(s) not only leads to changes of protein structure and function, but also prevents these thiol(s) from further oxidative modification; and (b) release of NO can activate other signaling pathways]. Thus, SNOs and protein S-nitrosylation may serve multiple roles to mitigate oxidative stress. Further investigation of the biologic functions of endogenous SNOs and protein S-nitrosylation in vivo will help to understand better the molecular mechanisms of NO signaling and provide new therapeutic opportunities and targets for intervention in cardiovascular diseases.

ABBREVIATIONS

Akt/PKB, protein kinase B; ADP, adenosine 5'-diphosphate; ALDH2, mitochondrial class 2 aldehyde dehydroge-

TABLE 1. S-NITROSYLATED PROTEINS IN CARDIOVASCULAR SYSTEM

I. Inhibition by S-nitrosylation Akt/PKB Caspase-3 Caspase-3 Creatine kinase Creatine kinase eNOS which is denitro Becreases GAPDI and inhibiting the high cand and the bioderest of the biodere	Suppresses the biologic effects of Akt/PKB		
Su Ke inase Su Chinase	hiologic effects of Akt/PKB		
Ke Su inase Su En		C2C12 myoblasts (mouse)	136
kinase Su eN	Keeps the zymogen in an inactive state, which protects	Neonatal cardiomyocytes (rat)	78
kinase Suel	cells from unwanted apoptosis (antiapoptosis)	Umbilical vein endothelial cells (human)	49, 110
e D	Suppresses myocardial contractility	Ventricular myocytes (rat)	2
Dé Ini	eNOS is tonically S-nitrosylated in resting basal level,	Aortic endothelial cells (bovine)	29, 30, 107
De Ini	which is denitrosylated on activation		
In	Decreases GAPDH binding affinity of cell membrane	Aortic endothelial cells (human, bovine)	133
Ini	and inhibiting the enzyme activity	Red blood cells (human)	36
archerty and at	Inhibits ATP hydrolyzing ability, disables the chaperone	Endothelial cells (EA.hy926 cell line)	84
אייטישייי, מווא מר	property, and abolishes the positive regulation of eNOS		
L-type Ca ²⁺ channel α 1 subunit Inhibits I _{Ca-L} in fer	Inhibits I _{Ca-L} in females under β-adrenergic stimulation	Ventricular myocytes (mouse)	118
Mitochondrial complex Inhibits complex I	ex I	Isolated heart mitochondria (rat)	16
Persistently inhibits complex IV	nibits complex IV	Pulmonary artery endothelial cells (human)	138
NF-кВ Inhibits gene trans	Inhibits gene transcription and antiinflammation	Alveolar type II epithelial cells (mouse)	108
N-ethylmaleimide-sensitive factor Inhibits disassemb	Inhibits disassembly of SNARE and antiinflammation	Aortic endothelial cell (human)	98
Tissue-type plasminogen activator Inhibits platelet aggregation	t aggregation	Aortic endothelial cell (bovine)	115
Attenuates necrosi	Attenuates necrosis after ischemia-reperfusion injury	Perfused heart in vivo (cat)	24
Tissue transglutaminase Inhibits enzyme ac	Inhibits enzyme activity and antiapoptosis	Aortic endothelial cell (bovine)	99
II. Activation by S-nitrosylation			
COX-2 Elicits preconditioning effect	litioning effect	Perfused hearts in vitro (rat)	4
HIF-1 Provokes HIF-1β	Provokes HIF-1β stabilization in normoxia	Pulmonary artery endothelial cells (bovine)	101
RyR2/SR Ca ²⁺ release channel Increases channel	Increases channel activity by poly-S-nitrosylation	Cardiac SR vesicles (dog)	132
Thioredoxin Increases reductas	Increases reductase activity and antiapoptosis	Vascular endothelial cells (human)	41

nase; ASK1, apoptosis signal-regulating kinase 1; ATP, adenosine 5'-triphosphate; cGMP, cyclic guanosine monophosphate; CK, creatine kinase; COX-2, cyclooxygenase-2; Cys, cysteine residue; eNOS, endothelial isoform of NOS; ER, estrogen receptor; GAPDH, glyceraldehydes-3-phosphate dehydrogenase; GSH, reducing glutathione; GSNO, S-nitrosoglutathione; GTP, guanine 5'-triphosphate; Hb, hemoglobin; HIF-1, hypoxia-inducible factor-1; HSP90, heat shock protein 90; I_{Ca,I}, L-type Ca²⁺ current; iNOS, inducible isoform of NOS; LWM SNO, low-molecular-weight SNO; Mb, myoglobin; mitochondrial PTP, mitochondrial permeability transition pore; NAD+/NADH, oxidized and reduced forms of nicotinamide adenine dinucleotide; NF-κB, nuclear factor κB; nNOS, neuronal isoform of NOS; NO, nitric oxide; NOS, nitric oxide synthase; O2-, superoxide anion; ONOO-, peroxynitrite; RNS, reactive nitrogen species; ROS, reactive oxygen species; RyR2, cardiac isoform of ryanodine receptor/SR Ca²⁺ release channel; SERCA2a, cardiac isoform of SR Ca2+-AT-Pase; SNO, S-nitrosothiol; SOD, superoxide dismutase; SR, sarcoplasmic reticulum; XOR, xanthine oxidoreductase.

REFERENCES

- Adachi T, Weibrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, and Cohen RA. S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. *Nat Med* 10: 1200–1207, 2004.
- Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, and Kelly RA. Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. *J Mol Cell Cardiol* 30: 979–988, 1998.
- Asahi M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, and Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide donor. *J Biol Chem* 270: 21035–21039, 1995.
- Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, Huang MH, Uretsky BF, Perez-Polo JR, and Birnbaum Y. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent Snitrosylation of cycloxygenase-2. *Am J Physiol* 290: H1960–H1968, 2006.
- Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai, IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, and Hare JM. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. *Nature* 416: 337–339, 2002.
- Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. *Cardiovasc Res* 61: 461–472, 2004.
- Belge C, Massion PB, Pelat M, and Balligand JL. Nitric oxide and the heart: update on new paradigms. *Ann N Y Acad Sci* 1047: 173–182, 2005.
- Beltran B, Orsi A, Clementi E, and Moncada S. Oxidative stress and S-nitrosylation of proteins in cells. *Br J Pharmacol* 129: 953–960, 2000.
- Berry CE and Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and

- pathophysiological implications. *J Physiol* 555: 589–606, 2004.
- Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, and Dawn B. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. *Cardiovasc Res* 55: 506–519, 2002.
- Brahmajothi MV and Campbell DL. Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoforms in mammalian heart: implication for mechanisms governing indirect and direct nitric oxide-related effects. Circ Res 85: 575–587, 1999.
- Broillet MC. S-nitrosylation of proteins. *Cell Mol Life Sci* 55: 1036–1042, 1999.
- Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ 10: 864–869, 2003.
- Brune B and Zhou J. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1α (HIF-1α). Curr Med Chem 10: 845–855, 2003.
- Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, and Feelisch M. Cellular targets and mechanism of nitros(yl)ation: an insight into their nature and kinetics in vivo. *Proc Natl Acad Sci U S A* 101: 4308–4313, 2004.
- Burwell LS, Nadtochiy SM, Tompkins AJ, Young SM, and Brookes PS. Direct evidence for S-nitrosation of mitochondrial complex I. *Biochem J* 394: 627–634, 2006.
- 17. Butzer U, Weidenbach H, Gansauge S, Gansauge F, Beger HG, and Nussler AK. Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase. FEBS Lett 445: 274–278, 1999.
- 18. Campbell DL, Stamler JS, and Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes: dual mechanism regulation by nitric oxide and Snitrosothiols. *J Gen Physiol* 108: 277–293, 1996.
- Cardounel AJ, Xia Y, and Zweier JL. Endogenous methylarginines modulate superoxide as well as nitric oxide generation from neuronal nitric oxide synthase: differences in the effects of monomethyl- and dimethylarginines in the presence and absence of tetrahydrobiopterin. *J Biol Chem* 280: 7540–7549, 2005.
- 20. Choi BM, Pae HO, Jang SI, Kim YM, and Chung HT. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. *J Biochem Mol Biol* 35: 116–126, 2002.
- Clementi E, Brown GC, Feelisch M, and Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. *Proc Natl Acad Sci U S A* 95: 7631–7636, 1998.
- Danson EJ, Choate JK, and Paterson DJ. Cardiac nitric oxide: emerging role of nNOS in regulating physiological function. *Pharmacol Ther* 106: 57–74, 2005.
- 23. Datta B, Tufnell-Barrett T, Bleasdale RA, Jones CJH, Beeton I, Paul V, Frenneaux M, and James P. Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure. *Circulation* 109: 1339–1342, 2004.
- Delyani JA, Nossuli TO, Scalia R, Thomas G, Garvey DS, and Lefer AM. S-nitrosylated tissue-type plasminogen activator protects against myocardial ischemia/reperfusion

injury in cats: role of the endothelium. *J Pharmacol Exp Ther* 279: 1174–1180, 1996.

- 25. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, and Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. *Nature* 399: 601–605, 1999.
- Dimmeler S, Haendeler J, Sause A, and Zeiher AM. Nitric oxide inhibits APO-1/Fas-mediated cell death. *Cell Growth Differ* 9: 415–422, 1998.
- Dong Z, Saikumar P, Weinberg JM, and Venkatachalam MA. Calcium in cell injury and death. *Annu Rev Pathol Mech Dis* 1: 405–434, 2006.
- Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, Patel RP, Yet SF, Wang X, Kevil CG, Gladwin MT, and Lefer DJ. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. *J Clin Invest* 115: 1232–1240, 2005.
- Erwin PA, Lin AJ, Golan DE, and Michel T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. *J Biol Chem* 280: 19888–19894, 2005.
- Erwin PA, Mitchell DA, Sartoretto J, Marletta MA, and Michel T. Subcellular targeting and differential S-nitrosylation of endothelial nitric oxide synthase. *J Biol Chem* 281: 151–157, 2006.
- Eu JP, Sun J, Xu L, Stamler JS, and Meissner G. The skeletal muscle calcium release channel: coupled O₂ sensor and NO signaling functions. *Cell* 102: 499–509, 2000.
- 32. Flogel U, Godecke A, Klotz LO, and Schrader J. Role of myoglobin in the antioxidant defense of the heart. *FASEB J* 18: 1156–1158, 2004.
- Flogel U, Merx MW, Godecke A, Decking UK, and Schrader J. Myoglobin: a scavenger of bioactive NO. *Proc* Natl Acad Sci USA 98: 735–740, 2001.
- 34. Foster MW, McMahon TJ, and Stamler JS. S-nitrosylation in health and disease. *Trends Mol Med* 9: 160–168, 2003.
- Foster MW and Stamler JS. New insights into protein S-nitrosylation: mitochondria as a model system. *J Biol Chem* 279: 25891–25897, 2004.
- Galli F, Rovidati S, Ghibelli L, and Canestrari F. S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase decreases the enzyme affinity to the erythrocyte membrane. *Nitric Oxide* 2: 17–27, 1998.
- Garban HJ, Marquez-Garban DC, Pietras RJ, and Ignarro LJ. Rapid nitric oxide-mediated S-nitrosylation of estrogen receptor: regulation of estrogen-dependent gene transcription. *Proc Natl Acad Sci U S A* 102: 2632–2636, 2005.
- 38. Ghelardoni S, Frascarelli S, Ronca-Testoni S, and Zucchi R. S-nitrosothiol detection in isolated perfused rat heart. *Mol Cell Biochem* 252: 347–357, 2003.
- 39. Gladwin MT, Shelhamer JH, Schechter AN, Pease-Fye ME, Waclawiw MA, Panza JA, Ognibene FP, and Cannon RO, III. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci U S A 97: 11482–11487, 2000.
- Godecke A, Molojavyi A, Heger J, Flogel U, Ding Z, Jacoby C, and Schrader J. Myoglobin protects the heart from inducible nitric-oxide synthase (iNOS)-mediated nitrosative stress. *J Biol Chem* 278: 21761–21766, 2003.

 Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, and Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4: 743–749, 2002.

- Haendeler J, Hoffmann J, Zeiher AM, and Dimmeler S. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculo-protective function of statins. *Circulation* 110: 856–861, 2004.
- Haendeler J, Weiland U, Zeiher AM, and Dimmeler S. Effects of redox-related congeners of NO on apoptosis and caspase-3 activity. *Nitric Oxide* 1: 282–293, 1997.
- 44. Hao G, Derakhshan B, Shi I, Campagne F, and Gross SS. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. *Proc Natl Acad Sci U S A* 103: 1012–1017, 2006.
- 45. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, and Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. *Nat Cell Biol* 7: 665–674, 2005.
- Hare JM. Nitric oxide and excitation–contraction coupling. J Mol Cell Cardiol 35: 719–729, 2003.
- 47. Hare JM and StamlerJS. NO/redox disequilibrium in the failing heart and cardiovascular system. *J Clin Invest* 115: 509–517, 2005.
- 48. Hess DT, Matsumoto A, Kim SO, Marshall HE, and Stamler JS. Protein S-nitrosylation: purview and parameters. *Nat Rev Mol Cell Biol* 6: 150–166, 2005.
- 49. Hoffmann J, Dimmeler S, and Haendeler J. Shear stress increases the amount of S-nitrosylated molecules in endothelial cells: important role for signal transduction. *FEBS Lett* 551: 153–158, 2003.
- Hu H, Chiamvimonvat N, Yamagishi T, and Marban E. Direct inhibition of expressed cardiac L-type Ca²⁺ channels by S-nitrosothiol nitric oxide donors. *Circ Res* 81: 742–752, 1997.
- Huang KT, Han TH, Hyduke DR, Vaughn MW, Van Herle H, Hein TW, Zhang C, Kuo L, and Liao JC. Modulation of nitric oxide bioavailability by erythrocytes. *Proc Natl Acad* Sci USA 98: 11771–11776, 2001.
- 52. Huang Z, Shiva S, Kim-Shapiro DB, Patel RP, Ringwood LA, Irby CE, Huang KT, Ho C, Hogg N, Schechter AN, and Gladwin MT. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. *J Clin Invest* 115: 2099–2107, 2005.
- 53. Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado RF, Tarekegn S, Mulla N, Hopper AO, Schechter AN, Power GG, and Gladwin MT. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. *Nat Med* 10: 1122–1127, 2004.
- Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, and Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. *Nat Cell Biol* 3: 193–197, 2001.
- Jaffrey SR and Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. *Sci STKE* 86: PL1, 2001.

 Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta 1411: 273–289, 1999.

- Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SVY, Tejani AD, Li D, Berkowitz DE, and Hare JM. Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. *Proc Natl Acad Sci U S A* 101: 15944–15948, 2004.
- 58. Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, Fridley M, Shoukas AA, Berkowitz DE, and Hare JM. Nitric oxide regulation of myocardial contractility and calcium cycling: Independent impact of neuronal and endothelial nitric oxide synthases. *Circ Res* 92: 1322–1329, 2003.
- 59. Kim KH and Nebder JR. Rapid, estrogen receptor-mediated signaling: why is the endothelium so special? *Sci STKE* 288: PE28, 2005.
- Kim KM, Kim PK, Kwon YG, Bai SK, Nam WD, and Kim YM. Regulation of apoptosis by nitrosative stress. J Biochem Mol Biol 35: 127–133, 2002.
- Kim PK, Kwon YG, Chung HT, and Kim YM. Regulation of caspases by nitric oxide. *Ann NY Acad Sci* 962: 42–52, 2002.
- 62. Kim YM, Kim TH, Seol DW, Talanian RV, and Billiar TR. Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome *c* release. *J Biol Chem* 273: 31437–31441, 1998.
- Knight RJ, Kofoed KF, Schelbert HR, and Buxton DB. Inhibition of glyceraldehyde-3-phosphate dehydrogenase in post-ischaemic myocardium. *Cardiovasc Res* 32: 1016–1023, 1996.
- 64. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, and Reed JC. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. *Proc Natl Acad Sci U S A* 96: 5752–5757, 1999.
- 65. Kuncewicz T, Sheta EA, Goldknopf IL, and Kone BC. Proteomic analysis of S-nitrosylated proteins in mesangial cells. *Mol Cell Proteomics* 2: 156–163, 2003.
- Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, and Greenberg CS. Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. *Biochem*istry 40: 4904–4910, 2001.
- Landino LM, Koumas MT, Mason CE, and Alston JA. Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. *Biochem Biophys Res Commun* 340: 347–352, 2006.
- 68. Lane P, Hao G, Gross SS. S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation. *Sci STKE* 2001: RE1, 2001.
- Leist M, Single B, Naumann H, Fava E, Simon B, Kuhnle S, and Nicotera P. Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. *Exp Cell Res* 249: 396–403, 1999.
- Li J, Billiar TR, Talanian RV, and Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. *Biochem Biophys Res Commun* 240: 419–424, 1997.
- Liu H, Colavitti R, Rovira II, and Finkel T. Redox-dependent transcriptional regulation. Circ Res 97: 967–974, 2005.

 Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, and Stamler JS. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. *Cell* 116: 617–628, 2004.

- Liu X, Miller MJS, Joshi MS, Thomas DD, and Lancaster JR Jr. Accelerated reaction of nitric oxide with O₂ within the hydrophobic interior of biological membranes. *Proc Natl Acad Sci U S A* 95: 2175–2179, 1998.
- 74. Lo Bello M, Nuccetelli M, Caccuri AM, Stella L, Parker MW, Rossjohn J, McKinstry WJ, Mozzi AF, Federici G, Polizio F, Pedersen JZ, and Ricci G. Human glutathione transferase P1–1 and nitric oxide carriers: a new role for an old enzyme. *J Biol Chem* 276: 42138–42145, 2001.
- Logue SE, Gustafsson AB, Samali A, and Gottlieb RA. Ischemia/reperfusion injury at the intersection with cell death. *J Mol Cell Cardiol* 38: 21–33, 2005.
- Lu XM, Lu M, Tompkins RG, and Fischman AJ. Site-specific detection of S-nitrosylated PKB alpha/Akt1 from rat soleus muscle using CapLC-Q-TOF(micro) mass spectrometry. *J Mass Spectrom* 40:1140–1148, 2005.
- Madamanchi NR, Vendrov A, and Runge MS. Oxidative stress and vascular disease. *Arterioscler Thromb Vasc Biol* 25: 29–38, 2005.
- Maejima Y, Adachi S, Morikawa K, Ito H, and Isobe M. Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. *J Mol Cell Cardiol* 38: 163–174, 2005.
- Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, and Gaston B. S-Nitrosylation of mitochondrial caspases. *J Cell Biol* 154: 1111–1116, 2001.
- Marshall HE and Stamler JS. Nitrosative stress-induced apoptosis through inhibition of NF-kappa B. *J Biol Chem* 277: 34223–34228, 2002.
- Martinez-Ruiz A and Lamas S. Detection and proteomic identification of S-nitrosylated proteins in endothelial cells. *Arch Biochem Biophys* 423: 192–199, 2004.
- Martinez-Ruiz A and Lamas S. S-nitrosylation: a potential new paradigm in signal transduction. *Cardiovasc Res* 62: 43–52, 2004.
- Martinez-Ruiz A and Lamas S. Nitrosylation of thiols in vascular homeostasis and diseases. *Curr Ather Rep* 7: 213– 218, 2005.
- 84. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, and Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. *Proc Natl Acad Sci U* SA 102: 8525–8530, 2005.
- 85. Marzinzig M, Nussler AK, Stadler J, Marzinzig E, Barthlen W, Nussler NC, Beger HG, Morris SM Jr, and Bruckner UB. Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. *Nitric Oxide* 1: 177–189, 1997.
- 86. Matsushita K, Morrell CN, Cambien B, Yang S, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O'Rourke B, Lowenstein JM, Pevsner J, Wagner DD, and Lowenstein CJ. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. *Cell* 115: 139–150, 2003.

87. Matthews JR, Botting CH, Panico M, Morris HR, and Hay RT. Inhibition of NF-kappaB DNA binding by nitric oxide. *Nucleic Acids Res* 24: 2236–2242, 1996.

- 88. Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, and Finazzi-Agro A. S-nitrosylation regulates apoptosis. *Nature* 388: 432–433, 1997.
- 89. Melino G, Catani MV, Corazzari M, Guerrieri P, and Bernassola F. Nitric oxide can inhibit apoptosis or switch it into necrosis. *Cell Mol Life Sci* 57: 612–622, 2000.
- Merx MW, Godecke A, Flogel U, and Schrader J. Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function. *FASEB J* 19: 1015–1017, 2005.
- 91. Mery PF, Pavoine C, Belhassen L, Pecker F, and Fischmeister R. Nitric oxide regulates cardiac Ca²⁺ current: involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. *J Biol Chem* 268: 26286–26295, 1993.
- 92. Mohr S, Stamler JS, and Brüne B. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by *S*-nitrosylation and subsequent NADH attachment. *J Biol Chem* 271: 4209–4214, 1996.
- 93. Molina y Vedia L, McDonald B, Reep B, Brune B, Di Silvio M, Billiar TR, and Lapetina EG. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. *J Biol Chem* 267: 24929–24932, 1992.
- Moon KH, Kim BJ, and Song BJ. Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated Snitrosylation. FEBS Lett 579: 6115–6120, 2005.
- Morad M and Suzuki YJ. Redox regulation of cardiac muscle calcium signaling. *Antioxid Redox Signal* 2: 65– 71, 2000.
- Muller B, Kleschyov AL, Alencar JL, Vanin A, and Stoclet J-C. Nitric oxide transport and storage in the cardiovascular system. *Ann NY Acad Sci* 962: 131–139, 2002.
- 97. Nedospasov A, Rafikov R, Beda N, and Nudler E. An autocatalytic mechanism of protein nitrosylation. *Proc Natl Acad Sci U S A* 97: 13543–13548, 2000.
- 98. Ng ES, Jourd'heuil D, McCord JM, Hernandez D, Yasui M, Knight D, and Kubes P. Enhanced S-nitroso-albumin formation from inhaled NO during ischemia reperfusion. *Circ Res* 94: 559–565, 2004.
- O'Neil BT and Abel ED. Akt1 in the cardiovascular system: friend or foe? J Clin Invest 115: 2059–2064, 2005.
- Pacher P, Schulz R, Liaudet L, and Szabo C. Nitosative stress and pharmacological modulation of heart failure. *Trends Pharmacol Sci* 26: 302–310, 2005.
- 101. Palmer LA, Gaston B, and Johns RA. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. *Mol Pharmacol* 58: 1197–1203, 2000.
- 102. Paolocci N, Ekelund UE, Isoda T, Ozaki M, Vandegaer K, Georgakopoulos D, Harrison RW, Kass DA, and Hare JM. cGMP-independent inotropic effects of nitric oxide and peroxynitrite donors: Potential role for nitrosylation. *Am J Physiol* 279: H1982–H1988, 2000.
- Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, and Sollott SJ. Endogenous nitric oxide mecha-

- nisms mediate the stretch dependence of Ca²⁺ release in cardiomyocytes. *Nat Cell Biol* 3: 867–873, 2001.
- 104. Piantadosi CA, Tatro LG, and Whorton AR. Nitric oxide and differential effects of ATP on mitochondrial permeability transition. *Nitric Oxide* 6: 45–60, 2002.
- 105. Poteser M, Romanin C, Schreibmayer W, Mayer B, and Groschner K. S-nitrosation controls gating and conductance of the α1 subunit of class C L-type Ca²⁺ channels. *J Biol Chem* 276: 14797–14803, 2001.
- 106. Rafikova O, Rafikov R, and Nudler E. Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control. *Proc Natl Acad Sci U* SA 99: 5913–5918, 2002.
- 107. Ravi K, Brennan LA, Levic S, Ross PA, and Black SM. S-nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. *Proc Natl Acad Sci U S A* 101: 2619–2624, 2004.
- 108. Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, and Janssen-Heininger YM. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. *Proc Natl Acad Sci U S A* 101: 8945– 8950, 2004.
- 109. Rizzo MA and Piston DW. Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase. *J Cell Biol* 161: 243–248, 2001.
- 110. Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, and Dimmeler S. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. *J Biol Chem* 274: 6823–6826, 1999.
- 111. Sabri AK, Hughie HH, and Lucchesi PAA. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. *Antioxid Redox Signal* 5: 731–740, 2003.
- 112. Schopfer FJ, Baker PRS, and Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? *Trends Biochem Sci* 28: 646–654, 2003.
- 113. Singel DJ and Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. *Annu Rev Physiol* 67: 99–145, 2005
- 114. Sonveaux P, Kaz AM, Snyder SA, Richardson RA, Cardenas-Navia LI, Braun RD, Pawloski JR, Tozer GM, Bonaventura J, McMahon TJ, Stamler JS, and Dewhirst MW. Oxygen regulation of tumor perfusion by S-nitrosohemoglobin reveals a pressor activity of nitric oxide. *Circ Res* 96: 1119–1126, 2005.
- 115. Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, Singel DJ, and Loscalzo J. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. *Proc Natl Acad Sci U S A* 89: 8087–8091, 1992.
- 116. Sumbayev VV. S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. *Arch Biochem Biophys* 415: 133–136, 2003.
- 117. Sumbayev VV, Budde A, Zhou J, and Brune B. HIF-1 alpha protein as a target for S-nitrosation. *FEBS Lett* 535: 106–112, 2003.
- 118. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, and Murphy E. Hypercontractile female hearts exhibit in-

creased S-nitrosylation of the L-type Ca^{2+} channel $\alpha 1$ subunit and reduced ischemia-reperfusion injury. *Circ Res* 98: 403–411, 2006.

- Sun J, Xin C, Eu JP, Stamler JS, and Meissner G. Cysteine 3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. *Proc Natl Acad Sci U S A* 98: 11158–11162, 2001.
- 120. Sun J, Xu L, Eu JP, Stamler JS, and Meissner G. Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms: an allosteric function for O₂ in S-nitrosylation of the channel. J Biol Chem 278: 8184–8189, 2003.
- 121. Tsuchiya K, Kanematsu Y, Yoshizumi M, Ohnishi H, Kirima K, Izawa Y, Shikishima M, Ishida T, Kondo S, Kagami S, Takiguchi Y, and Tamaki T. Nitrite is an alternative source of NO in vivo. *Am J Physiol* 288: H2163–H2170, 2005.
- 122. Ungvari Z, Gupte SA, Recchia FA, Batkai S, and Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. *Curr Vasc Pharmacol* 3: 221–229, 2005.
- 123. Wang X, Tanus-Santos JE, Reiter CD, Dejam A, Shiva S, Smith RD, Hogg N, and Gladwin MT. Biological activity of nitric oxide in the plasmatic compartment. *Proc Natl Acad Sci U S A* 101: 11477–11482, 2004.
- 124. Waring P. Redox active calcium ion channels and cell death. *Arch Biochem Biophys* 434: 33–42, 2005.
- 125. Webb A, Bond R, McLean P, Uppal R, Benjamin N, and Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. *Proc Natl Acad Sci U S A* 101: 13683– 13688, 2004.
- 126. Weiland U, Haendeler J, Ihling C, Albus U, Scholz W, Ruetten H, Zeiher AM, and Dimmeler S. Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway. *Cardiovasc Res* 45: 671–678, 2000
- 127. Weitzberg E and Lundberg JON. Nonenzymatic nitric oxide production in humans. *Nitric Oxide* 2: 17–27, 1998.
- 128. Whiteman M, Chua YL, Zhang D, Duan W, Liou YC, and Armstrong JS. Nitric oxide protects against mitochondrial permeabilization induced by glutathione depletion: role of S-nitrosylation? *Biochem Biophys Res Commun* 339: 255–262, 2006.
- 129. Wolosker H, Panizzutti R, and Engelender S. Inhibition of creatine kinase by S-nitrosoglutathione. *FEBS Lett* 392: 274–276, 1996.

 Xu A, Vita JA, and Heaney Jr JF. Ascorbic acid and glutathione modulate the biological activity of S-nitrosoglutathione. *Hypertension* 36: 291–295, 2000.

- 131. Xu KY, Huso DL, Dawson TM, Bredt DS, and Becker LC. Nitric oxide synthase in cardiac sarcoplasmic reticulum. *Proc Natl Acad Sci U S A* 96: 657–662, 1999.
- 132. Xu L, Eu JP, Meissner G, and Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. *Science* 279: 234–237, 1998.
- 133. Yang Y and Loscalzo J. S-nitrosoprotein formation and localization in endothelial cells. *Proc Natl Acad Sci U S A* 102: 117–122, 2005.
- 134. Yasinska IM, Kozhukhar AV, and Sumbayev VV. S-nitrosation of thioredoxin in the nitrogen monoxide/superoxide system activates apoptosis signal-regulating kinase 1. *Arch Biochem Biophys* 428: 198–203, 2004.
- 135. Yasinska IM and Sumbayev VV. S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett 549: 105–109, 2003.
- 136. Yasukawa T, Tokunaga E, Ota H, Sugita H, Martyn JA, and Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. *J Biol Chem* 280: 7511–7518, 2005.
- 137. Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, Nagai Y, Fujisawa Y, Miyatake A, and Abe Y. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. *Cardiovasc Res* 65: 230–238, 2005.
- 138. Zhang J, Jin B, Li L, Block ER, and Patel JM. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. *Am J Physiol* 288: C840–C849, 2005.
- 139. Zweier JL, Samouilov A, and Kuppusamy P. Non-enzymatic nitric oxide synthesis in biological systems. *Biochim Biophys Acta* 1411: 250–262, 1999.

Address reprint requests to:
Dr. Junhui Sun
National Institute of Environmental Health Sciences
Laboratory of Signal Transduction
111 TW Alexander Drive
P.O. Box 12233, MDF2-07
Research Triangle Park, NC 27709

E-mail: sun@niehs.nih.gov

Date of first submission to ARS Central, April 27, 2006; date of acceptance, May 2, 2006.

This article has been cited by:

- 1. Vikas Kumar, Timothy Dean Calamaras, Dagmar Haeussler, Wilson Steven Colucci, Richard Alan Cohen, Mark Errol McComb, David Pimentel, Markus Michael Bachschmid. 2012. Cardiovascular Redox and Ox Stress Proteomics. *Antioxidants & Redox Signaling* 17:11, 1528-1559. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 2. Erika Bechtold, S. Bruce King. 2012. Chemical Methods for the Direct Detection and Labeling of S-Nitrosothiols. Antioxidants & Redox Signaling 17:7, 981-991. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 3. Yoshiki Koriyama, Marie Kamiya, Tsuneo Takadera, Kunizo Arai, Kayo Sugitani, Kazuhiro Ogai, Satoru Kato. 2012. Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells. *Neurochemistry International*. [CrossRef]
- 4. Yong Hun Chi, Sun Young Kim, In Jung Jung, Mi Rim Shin, Young Jun Jung, Jin Ho Park, Eun Seon Lee, Punyakishore Maibam, Kang-San Kim, Joung Hun Park, Min Ji Kim, Gwang Yong Hwang, Sang Yeol Lee. 2012. Dual functions of Arabidopsis sulfiredoxin: Acting as a redox-dependent sulfinic acid reductase and as a redox-independent nuclease enzyme. *FEBS Letters* **586**:19, 3493-3499. [CrossRef]
- 5. Junhui Sun, Angel M. Aponte, Mark J. Kohr, Guang Tong, Charles Steenbergen, Elizabeth Murphy. 2012. Essential role of nitric oxide in acute ischemic preconditioning: S-Nitros(yl)ation versus sGC/cGMP/PKG signaling?. Free Radical Biology and Medicine . [CrossRef]
- 6. Claudia Penna, Maria-Giulia Perrelli, Pasquale Pagliaro. Mitochondrial Pathways, Permeability Transition Pore, and Redox Signaling in Cardioprotection: Therapeutic Implications. *Antioxidants & Redox Signaling*, ahead of print. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 7. María C. Martí, Igor Florez-Sarasa, Daymi Camejo, Beatriz Pallol, Ana Ortiz, Miquel Ribas-Carbó, Ana Jiménez, Francisca Sevilla. 2012. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves. *Physiologia Plantarum* no-no. [CrossRef]
- 8. Miao Liu, James E. Talmadge, Shi-Jian Ding. 2012. Development and application of site-specific proteomic approach for study protein S-nitrosylation. *Amino Acids* . [CrossRef]
- 9. Charles Steenbergen, Nikolaos G. FrangogiannisIschemic Heart Disease 495-521. [CrossRef]
- 10. Hayato Ohtani, Hideki Katoh, Takamitsu Tanaka, Masao Saotome, Tsuyoshi Urushida, Hiroshi Satoh, Hideharu Hayashi. 2011. Effects of nitric oxide on mitochondrial permeability transition pore and thiol-mediated responses in cardiac myocytes. *Nitric Oxide*. [CrossRef]
- 11. Valerio Chiurchiù, Mauro Maccarrone. 2011. Chronic Inflammatory Disorders and Their Redox Control: From Molecular Mechanisms to Therapeutic Opportunities. *Antioxidants & Redox Signaling* 15:9, 2605-2641. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 12. B. Wegiel, D. Gallo, E. Csizmadia, T. Roger, E. Kaczmarek, C. Harris, B. S. Zuckerbraun, L. E. Otterbein. 2011. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. *Proceedings of the National Academy of Sciences*. [CrossRef]
- 13. Toru Okazaki, Hajime Otani, Takayuki Shimazu, Kei Yoshioka, Masanori Fujita, Toshiji Iwasaka. 2011. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart. *Free Radical Research* **45**:10, 1173-1183. [CrossRef]
- 14. B. L. Slomiany, A. Slomiany. 2011. Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. *Inflammopharmacology* **19**:4, 197-204. [CrossRef]
- 15. Elizabeth Murphy, Mark Kohr, Junhui Sun, Tiffany Nguyen, Charles Steenbergen. 2011. S-nitrosylation: A radical way to protect the heart. *Journal of Molecular and Cellular Cardiology*. [CrossRef]
- 16. Kaustav Dutta Chowdhury, Gargi Sen, Avik Sarkar, Tuli Biswas. 2011. Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis. *Biochimica et Biophysica Acta (BBA) General Subjects* **1810**:7, 652-665. [CrossRef]
- 17. Federica Tessari, Silvia Bortolami, Franco Zoccarato, Adolfo Alexandre, Lucia Cavallini. 2011. Different effects of SNP and GSNO on mitochondrial O 2 .- /H2O2 production. *Journal of Bioenergetics and Biomembranes* **43**:3, 267-274. [CrossRef]
- 18. Shubhra Chaudhuri, Sandra S. McCullough, Leah Hennings, Lynda Letzig, Pippa M. Simpson, Jack A. Hinson, Laura P. James. 2011. Acetaminophen hepatotoxicity and HIF-1# induction in acetaminophen toxicity in mice occurs without hypoxia. *Toxicology and Applied Pharmacology* 252:3, 211-220. [CrossRef]

- Byoung-Joon Song, Mohamed A. Abdelmegeed, Seong-Ho Yoo, Bong-Jo Kim, Sangmee A. Jo, Inho Jo, Kwan-Hoon Moon.
 Post-translational modifications of mitochondrial aldehyde dehydrogenase and biomedical implications. *Journal of Proteomics*. [CrossRef]
- 20. Yassine Chtourou, Khaled Trabelsi, Hamadi Fetoui, Ghada Mkannez, Héla Kallel, Najiba Zeghal. 2011. Manganese Induces Oxidative Stress, Redox State Unbalance and Disrupts Membrane Bound ATPases on Murine Neuroblastoma Cells In Vitro: Protective Role of Silymarin. *Neurochemical Research*. [CrossRef]
- 21. Dagmar Procházková, Nad'a Wilhelmová. 2011. Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. *Nitric Oxide* 24:2, 61-65. [CrossRef]
- 22. Pasquale Pagliaro, Francesca Moro, Francesca Tullio, Maria-Giulia Perrelli, Claudia Penna. 2011. Cardioprotective Pathways During Reperfusion: Focus on Redox Signaling and Other Modalities of Cell Signaling. *Antioxidants & Redox Signaling* 14:5, 833-850. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF] with Links]
- 23. Orawin Prangsaengtong, Keiichi Koizumi, Kazutaka Senda, Hiroaki Sakurai, Ikuo Saiki. 2011. eNOS and Hsp90 Interaction Directly Correlates with Cord Formation in Human Lymphatic Endothelial Cells. *Lymphatic Research and Biology* 9:1, 53-59. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF] with Links]
- 24. Toru Okazaki, Hajime Otani, Takayuki Shimazu, Kei Yoshioka, Masanori Fujita, Tayo Katano, Seiji Ito, Toshiji Iwasaka. 2011. Reversal of inducible nitric oxide synthase uncoupling unmasks tolerance to ischemia/reperfusion injury in the diabetic rat heart. *Journal of Molecular and Cellular Cardiology* **50**:3, 534-544. [CrossRef]
- 25. C. B. Pattillo, S. Bir, V. Rajaram, C. G. Kevil. 2011. Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases. *Cardiovascular Research* 89:3, 533-541. [CrossRef]
- 26. Luigi Baratto, Laura Calzà, Roberto Capra, Michele Gallamini, Luciana Giardino, Alessandro Giuliani, Luca Lorenzini, Silvano Traverso. 2011. Ultra-low-level laser therapy. *Lasers in Medical Science* **26**:1, 103-112. [CrossRef]
- 27. Bronislaw L. SLomiany, Amalia Slomiany. 2011. Helicobacter pylori Induces Disturbances in Gastric Mucosal Akt Activation through Inducible Nitric Oxide Synthase-Dependent S-Nitrosylation: Effect of Ghrelin. *ISRN Gastroenterology* **2011**, 1-8. [CrossRef]
- 28. Mylène Paradis, Josianne Gagné, Mircea-Alexandru Mateescu, Joanne Paquin. 2010. The effects of nitric oxide-oxidase and putative glutathione-peroxidase activities of ceruloplasmin on the viability of cardiomyocytes exposed to hydrogen peroxide. *Free Radical Biology and Medicine* **49**:12, 2019-2027. [CrossRef]
- 29. B. L. Slomiany, A. Slomiany. 2010. Role of constitutive nitric oxide synthase S-nitrosylation in Helicobacter pylori-induced gastric mucosal cell apoptosis: effect of ghrelin. *Inflammopharmacology* **18**:5, 233-240. [CrossRef]
- 30. B. L. Slomiany, A. Slomiany. 2010. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis-induced salivary gland acinar cell apoptosis. *Inflammopharmacology* **18**:3, 119-125. [CrossRef]
- 31. Bronislaw L. Slomiany, Amalia Slomiany. 2010. Ghrelin Protection against Lipopolysaccharide-Induced Gastric Mucosal Cell Apoptosis Involves Constitutive Nitric Oxide Synthase-Mediated Caspase-3 S-Nitrosylation. *Mediators of Inflammation* **2010**, 1-7. [CrossRef]
- 32. Bronislaw L. Slomiany, Amalia Slomiany. 2010. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells. *Journal of Signal Transduction* **2010**, 1-7. [CrossRef]
- 33. Daniel R. Hyduke, Sally A. Amundson, Albert J. FornaceComplexity of Stress Signaling 2107-2125. [CrossRef]
- 34. Georgia Tanou, Claudette Job, LoÃ-c Rajjou, Erwann Arc, Maya Belghazi, Grigorios Diamantidis, Athannasios Molassiotis, Dominique Job. 2009. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. *The Plant Journal* **60**:5, 795-804. [CrossRef]
- 35. Hajime Otani Measurements of Nitric Oxide Signaling in the Ischemia/Reperfusion Heart 151-155. [Abstract] [Summary] [Full Text PDF] [Full Text PDF with Links]
- 36. Ling Li, Anna Hsu, Philip K. Moore. 2009. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation a tale of three gases!. *Pharmacology & Therapeutics* **123**:3, 386-400. [CrossRef]
- 37. Hajime Otani . 2009. The Role of Nitric Oxide in Myocardial Repair and Remodeling. *Antioxidants & Redox Signaling* 11:8, 1913-1928. [Abstract] [Full Text PDF] [Full Text PDF with Links]
- 38. E ARNER. 2009. Focus on mammalian thioredoxin reductases Important selenoproteins with versatile functions. *Biochimica et Biophysica Acta (BBA) General Subjects* **1790**:6, 495-526. [CrossRef]

- 39. D. Brian Foster, Jennifer E. Van Eyk, Eduardo Marbán, Brian O'Rourke. 2009. Redox signaling and protein phosphorylation in mitochondria: progress and prospects. *Journal of Bioenergetics and Biomembranes* **41**:2, 159-168. [CrossRef]
- 40. Jorge Limón-Pacheco, María E. Gonsebatt. 2009. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis* 674:1-2, 137-147. [CrossRef]
- 41. M. Carmen Martínez, Ramaroson Andriantsitohaina. 2009. Reactive Nitrogen Species: Molecular Mechanisms and Potential Significance in Health and Disease. *Antioxidants & Redox Signaling* 11:3, 669-702. [Abstract] [Full Text PDF] [Full Text PDF with Links]
- 42. Masuko Ushio-Fukai. 2009. Vascular signaling through G protein-coupled receptors: new concepts. *Current Opinion in Nephrology and Hypertension* **18**:2, 153-159. [CrossRef]
- 43. M. Chaki, A. M. Fernandez-Ocana, R. Valderrama, A. Carreras, F. J. Esteban, F. Luque, M. V. Gomez-Rodriguez, J. C. Begara-Morales, F. J. Corpas, J. B. Barroso. 2009. Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction. *Plant and Cell Physiology* **50**:3, 665-679. [CrossRef]
- 44. M. Chaki, A. M. Fernandez-Ocana, R. Valderrama, A. Carreras, F. J. Esteban, F. Luque, M. V. Gomez-Rodriguez, J. C. Begara-Morales, F. J. Corpas, J. B. Barroso. 2008. Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction. *Plant and Cell Physiology* **50**:2, 265-279. [CrossRef]
- 45. Kahina Abbas, Jacques Breton, Jean-Claude Drapier. 2008. The interplay between nitric oxide and peroxiredoxins. *Immunobiology* **213**:9-10, 815-822. [CrossRef]
- 46. Fabienne Peyrot, Claire Ducrocq. 2008. Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. *Journal of Pineal Research* **45**:3, 235-246. [CrossRef]
- 47. Hua Wang, Ming Xian. 2008. Fast Reductive Ligation of S -Nitrosothiols. *Angewandte Chemie International Edition* **47**:35, 6598-6601. [CrossRef]
- 48. Hua Wang, Ming Xian. 2008. Fast Reductive Ligation of S -Nitrosothiols. *Angewandte Chemie* **120**:35, 6700-6703. [CrossRef]
- 49. Dunyaporn Trachootham, Weiqin Lu, Marcia A. Ogasawara, Nilsa Rivera-Del Valle, Peng Huang. 2008. Redox Regulation of Cell Survival. *Antioxidants & Redox Signaling* 10:8, 1343-1374. [Abstract] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]
- 50. Wenhai Jin, Anna T. Brown, Anne M. Murphy. 2008. Cardiac myofilaments: from proteome to pathophysiology. PROTEOMICS – CLINICAL APPLICATIONS 2:6, 800-810. [CrossRef]
- 51. Immacolata Castellano, Maria Rosaria Ruocco, Francesca Cecere, Antimo Di Maro, Angela Chambery, Andzelika Michniewicz, Giuseppe Parlato, Mariorosario Masullo, Emmanuele De Vendittis. 2008. Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis. *Biochimica et Biophysica Acta (BBA) Proteins and Proteomics* 1784:5, 816-826. [CrossRef]
- 52. Nicolas Brandes, Andrea Rinck, Lars Ingo Leichert, Ursula Jakob. 2007. Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. *Molecular Microbiology* **66**:4, 901-914. [CrossRef]
- 53. Gerd Schmitz, Margot Grandl. 2007. Role of Redox Regulation and Lipid Rafts in Macrophages During Ox-LDL-Mediated Foam Cell Formation. *Antioxidants & Redox Signaling* **9**:9, 1499-1518. [Abstract] [Full Text PDF] [Full Text PDF with Links]
- 54. Christopher Brynczka, Bruce Alex Merrick. 2007. Nerve Growth Factor Potentiates p53 DNA Binding but Inhibits Nitric Oxide-Induced Apoptosis in Neuronal PC12 Cells. *Neurochemical Research* **32**:9, 1573-1585. [CrossRef]
- 55. Junichi Sadoshima . 2006. Redox Regulation of Growth and Death in Cardiac Myocytes. *Antioxidants & Redox Signaling* 8:9-10, 1621-1624. [Citation] [Full Text PDF] [Full Text PDF with Links]
- 56. Dipak K. Das Methods in Redox Signaling. [Citation] [Full Text HTML] [Full Text PDF] [Full Text PDF with Links]